Significance assessment in local sequence alignment with gaps

Ralf Bundschuh
Department of Physics, The Ohio State University

Collaborators:
T. Hwa, R. Olsen, Physics Department, UC San Diego
S. Altschul, Y.K. Yu, National Center for Biotechnology Information, NIH

Outline:

• Biological sequences and what to do with them
• Sequence alignment
• Statistical significance
• Central conjecture
• Applications
• Conclusions

Funding: NSF, DAAD, Beckman foundation
The data: a piece of human chromosome 21

Sequence of 3 billion A, C, G, and T’s

The problem: What does it mean?
How do we find out what a sequence does?

First step: Determine which part codes for proteins and determine protein sequence → solved, e.g., myoglobin: MGLSDGEWQLVLHVWAKVEADVAGHGQDILIRLF...

Second step: compare sequence to sequences of genes (of other organisms) with known function ⇒ Sequence alignment algorithms

Calculate score Σ for every pair of sequences.

Sequences similar enough ⇒ putative functional similarity

Putative function to be confirmed by experiment

Everybody does it: paper presenting most widely used program BLAST is most cited paper in all of science written in the 90’s

Altschul et al., 1990
Sequence alignment I

• How do sequence alignment algorithms work?

• Want to find sequence similarities, e.g.,

\[
\begin{align*}
\text{AGMKCYDHP SARQ AW} \\
\text{KDAGVMK YEHP SQRW}
\end{align*}
\]

• Need way to compare individual letters \(\rightarrow \) scoring matrix \(s_{a,b} \)

 – Has to represent similarities between letters

 – DNA-DNA comparison:

\[
s_{a,b} = \begin{cases}
1 & \text{for } a = b \\
-\mu & \text{for } a \neq b
\end{cases}
\]

 – Protein-protein: BLOSUM or PAM matrices

<table>
<thead>
<tr>
<th>(a)</th>
<th>(p(a))</th>
<th>(s_{a,b}) for PAM–250</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3.52%</td>
<td>2</td>
</tr>
<tr>
<td>R</td>
<td>2.31%</td>
<td>-2 -6</td>
</tr>
<tr>
<td>N</td>
<td>2.02%</td>
<td>0 0 2</td>
</tr>
<tr>
<td>D</td>
<td>2.42%</td>
<td>0 -1 2 4</td>
</tr>
<tr>
<td>C</td>
<td>0.87%</td>
<td>-2 -4 -4 -5</td>
</tr>
<tr>
<td>Q</td>
<td>1.92%</td>
<td>0 1 1 2 -5 4</td>
</tr>
<tr>
<td>E</td>
<td>2.84%</td>
<td>0 -1 1 3 -5 2 4</td>
</tr>
<tr>
<td>G</td>
<td>3.32%</td>
<td>1 -3 0 1 -3 -1 0 5</td>
</tr>
<tr>
<td>H</td>
<td>0.99%</td>
<td>-1 2 2 1 -3 3 1 -2 6</td>
</tr>
<tr>
<td>I</td>
<td>2.32%</td>
<td>-1 -2 -2 -2 -2 -2 -3 -2 5</td>
</tr>
<tr>
<td>L</td>
<td>4.00%</td>
<td>-2 -3 -3 -4 -6 -2 -3 -4 -2 2 6</td>
</tr>
<tr>
<td>K</td>
<td>2.59%</td>
<td>-1 3 1 0 -5 1 0 -2 0 -2 -3 5</td>
</tr>
<tr>
<td>M</td>
<td>1.01%</td>
<td>-1 -2 -3 -5 -1 -2 -3 -2 2 4 0 6</td>
</tr>
<tr>
<td>F</td>
<td>1.74%</td>
<td>-4 -4 -6 -4 -5 -5 -5 -2 1 2 -5 0 9</td>
</tr>
<tr>
<td>P</td>
<td>2.34%</td>
<td>1 0 -1 -1 -3 0 -1 -1 0 -2 -3 -1 -2 -5 6</td>
</tr>
<tr>
<td>S</td>
<td>3.21%</td>
<td>1 0 1 0 0 -1 -1 -1 -1 0 -2 -3 1 2</td>
</tr>
<tr>
<td>T</td>
<td>2.63%</td>
<td>1 -1 0 0 -2 -1 0 0 -1 0 -2 0 -1 -3 0 1 3</td>
</tr>
<tr>
<td>W</td>
<td>0.60%</td>
<td>-6 2 -4 -7 -8 -5 -7 -7 -3 -5 -2 -3 -4 0 -6 -2 -5</td>
</tr>
<tr>
<td>Y</td>
<td>1.45%</td>
<td>-3 -4 -2 -4 0 -4 -4 -5 0 -1 -1 -4 -2 7 -5 -3 -3 0 17</td>
</tr>
<tr>
<td>V</td>
<td>2.96%</td>
<td>0 -2 -2 -2 -2 -2 -1 -2 4 2 -2 2 -1 -1 -1 0 -6 -2 -4</td>
</tr>
</tbody>
</table>

– Many parameters

• Combine entries from the scoring matrix to an alignment score \(\Sigma \)
Sequence alignment II

- Simplest algorithm: gapless alignment

- Given pair of sequences $a_1 \ldots a_N$ and $b_1 \ldots b_N$

- Assign score to pair of substrings $a_{i-\ell+1} \ldots a_i$ and $b_{j-\ell+1} \ldots b_j$

$$S[i,j,\ell] \equiv \sum_{k=0}^{\ell-1} s_{a_{i-k},b_{j-k}}$$

$$S(11,13,6) = 10 + 3 + 6 + 6 + 2 + 0 = 27$$

- Optimal alignment has score $\Sigma \equiv \max_{i,j,\ell} S[i,j,\ell]$

- Clever way to find optimal alignment $S_{i,j} \equiv \max_\ell S[i,j,\ell]$

$$\Rightarrow S_{i,j} = \max\{S_{i-1,j-1} + s_{a_i,b_j}, 0\}$$

$$\Sigma = \max_{i,j} S_{i,j}$$
Statistical Significance I

- Problem: Algorithms assign score Σ to every sequence pair, even random ones
- Which Σ implies biological relationship?
- Statistical answer: find score distribution $P(\Sigma)$ if algorithm is applied to random sequences

\Rightarrow can assign probability $p(\sigma) = \Pr\{\Sigma \geq \sigma\} = \int_{\sigma}^{\infty} P(\Sigma)d\Sigma$ to each score

- Choose highest score across a database of size N

- $p > 1/N \Rightarrow$ not similar enough
- $p < 1/N \Rightarrow$ biologically relevant!
• Need score distribution $P(\Sigma)$ for random sequences

• Obtain distribution by numerical simulation (shuffling method)

- Generate many pairs of random sequences with correct letter composition
- Align each pair
- Take histogram of alignment scores

• Very time consuming (hours)
Significance Assessment III

- Precompute distribution

- But: distribution depends on
 - Scoring parameters, e.g. $s_{a,b}$
 - Sequence ensemble, e.g. p_a

- Pre-computation only possible for some fixed set of scoring systems at overall amino acid/base pair frequencies

- Problems:
 - unusual amino acid composition
 - Iterative schemes (PSI-BLAST)

- Position dependent scoring parameters

⇒ Need fast numerical way or analytical theory to get score distribution
Significance Assessment IV

- Analytical theory for gapless alignment: Gumbel or extreme value distribution

\[P(\Sigma) = \kappa \lambda \exp[-\lambda \Sigma - \kappa e^{-\lambda \Sigma}] \]

- universal shape

- Dependence on scoring system and letter frequencies in parameters \(\kappa, \lambda \)

- \(\kappa, \lambda \) known: \(\langle e^{\lambda s} \rangle \equiv \sum_{a,b} p_a p_b e^{\lambda s_{a,b}} = 1 \)

- Corrections due to finite sequence length analytically known

- Makes gapless alignment powerful tool: BLAST

Altschul et al., J. Mol. Biol. 1990
Sequence alignment III

• Problem: during evolution pieces of sequences are inserted and deleted ⇒ alignment algorithm has to compensate for this ⇒ do gapped alignments to find weak similarities

• First: gapped global alignment

• Alignment = way of inserting gaps in sequences

--AG-MKCYDHPSARQAW
KDAGVMK-YEHPS--QRW

• Score gaps by $-\delta$

• Score $S[\mathcal{A}]$ for each alignment \mathcal{A}

$$S[\mathcal{A}] = \sum_{(a,b) \in \mathcal{A}} s_{a,b} - \delta N_g$$

• In practice: affine gap cost $\delta + \epsilon k$

• Find alignment with highest score

$$\Sigma = \max_{\mathcal{A}} S[\mathcal{A}]$$

• Exponentially many alignments for each pair of sequences!
Sequence alignment IV

• Representation on an alignment grid:

\[
\begin{align*}
\text{AG-MKCYDHPSARQAW} \\
\text{KDAGVMK-YEHPS--QRW}
\end{align*}
\]

• Dynamic programming: \(O(N^2)\) algorithm

Needleman and Wunsch, 1970

\[
h(r, t + 1) = \max\{h(r + 1, t) - \delta, h(r, t - 1) + s(r, t)\}
\]

• \(\Sigma = h(0, 2N)\)
Sequence alignment

- Often only pieces of two sequences related ⇒ local alignment with gaps
 - Look at all pairs of subsequences $a_i \ldots a_j$ and $b_k \ldots b_l$ of the original sequences
 - Calculate gapped global alignment score $\Sigma(i, j, k, l)$ for each pair using Needleman-Wunsch algorithm
 - Total alignment score is best of these $\Sigma = \max_{i,j,k,l} \Sigma(i, j, k, l)$

- $O(N^6)$ algorithm?

- Again dynamic programming solution

 Smith and Waterman, 1981

\[
S_{j,l} \equiv \max_{i,k} \Sigma(i, j, k, l)
\]

\[
S_{j,l} = \max\{S_{j-1,l} - \delta, S_{j,l-1} - \delta, S_{j-1,l-1} + s_{a_j, b_k}, 0\}
\]

\[
\Sigma = \max_{j,k} S_{j,k}
\]

- Practically used sequence comparison programs (BLAST, FASTA) are approximations of this algorithm
Significance Assessment V

- Problem: Significance assessment less clear for alignment with gaps
- Shape of distribution numerically verified to be still Gumbel
- What are the values of the non-universal parameters λ and κ?
- Only very limited theories and heuristics

- Statistical physics problem:

 Find distribution of observable in disordered system

⇒ Use statistical physics methods
Central conjecture:

The distribution of Σ is of the Gumbel form with the Gumbel parameter λ given by

$$\langle e^{\lambda h(0,2N)} \rangle = 1$$

Properties:

- $h(0,2N)$ free energy
 - \Rightarrow $\langle e^{\lambda h(0,2N)} \rangle \approx \langle Z^\lambda \rangle$ “replicated” partition function
 - \Rightarrow hard to calculate analytically

- $\langle h(0,2N) \rangle < 0$
 - \Rightarrow typical sequence pairs contribute zero to $\langle e^{\lambda h(0,2N)} \rangle$
 - \Rightarrow rare events dominate $\langle e^{\lambda h(0,2N)} \rangle$
 - \Rightarrow numerically hard

- Reduces to proven formula $\langle e^{\lambda s} \rangle = 1$ for gapless alignment
- Not proven, but applications work
Applications I

- Application I: DNA-DNA comparison with $\mu = 2\delta$:
 - Mapping possible to asymmetric exclusion process
 - Model of highway traffic
 - Exactly solvable model of non-equilibrium physics
- Can calculate $\langle e^{\lambda h(0, 2N)} \rangle$
- Gumbel λ given by

 \[
 \frac{1 + \sqrt{p} \exp\left[\frac{\lambda}{2} (1 + \mu)\right]}{1 + \sqrt{p} \exp\left[-\frac{\lambda}{2} (1 + \mu)\right]} \exp\left[-\frac{\lambda}{2} \mu\right] = 1 \quad (\ast)
 \]
- Compare calculated with simulated λ ($p = 1/4$, DNA)
- Provides test case for heuristic approaches

\Rightarrow BLAST p-value calculation changed since version 2.1.3

Altschul, RB, Olsen, and Hwa, Nucleic Acids Res. 2001
Applications II

- Application II: Smart numerics

- Estimate $\langle e^{\lambda h(0,2N)} \rangle$ by numerical sampling

- Instead of random sequence pairs (with $\langle h(0,2N) \rangle < 0$) use correlated sequence pairs with $\langle h(0,2N) \rangle > 0$ such that
 - $\langle e^{\lambda h(0,2N)} \rangle_{\text{corr}}$ is not dominated by rare events
 - The difference between $\langle \cdot \rangle$ and $\langle \cdot \rangle_{\text{corr}}$ can be handled analytically

- Estimate $\langle e^{\lambda h(0,2N)} \rangle$ for $N = 60$, $N = 80$, $N = 100$ and extrapolate to $N \to \infty$

- Results:

<table>
<thead>
<tr>
<th>Scoring system</th>
<th>$\lambda_{\text{reference}}$</th>
<th>$\lambda_{\text{this algorithm}}$</th>
<th>time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLOSUM45/14/2</td>
<td>0.1961±0.0008</td>
<td>0.1978±0.0005</td>
<td>3:00</td>
</tr>
<tr>
<td>BLOSUM62/11/1</td>
<td>0.2670±0.0002</td>
<td>0.2669±0.0006</td>
<td>5:49</td>
</tr>
<tr>
<td>BLOSUM80/10/1</td>
<td>0.2993±0.0012</td>
<td>0.3004±0.0005</td>
<td>1:00</td>
</tr>
<tr>
<td>PAM70/10/1</td>
<td>0.2921±0.0013</td>
<td>0.2922±0.0003</td>
<td>0:26</td>
</tr>
<tr>
<td>PAM30/9/1</td>
<td>0.2963±0.0011</td>
<td>0.2954±0.0002</td>
<td>0:27</td>
</tr>
</tbody>
</table>
Applications III

• Application III: $\langle e^{\lambda h(0,2N)} \rangle = 1$ in general hard to fulfill

 Instead of calculating complicated quantity for Smith-Waterman alignment change the algorithm

• Smith-Waterman

$$S(r, t+1) = \max \left\{ S(r+1, t) - \delta, S(r-1, t) - \delta, S(r, t-1) + s(r, t), 0 \right\}, \quad \Sigma = \max_{r,t} S(r, t)$$

• Replace by hybrid algorithm

$$Z(r, t+1) = Z(r+1, t)e^{-\lambda gl \delta} + Z(r-1, t)e^{-\lambda gl \delta}, \quad \Sigma = \max_{r,t} \log Z(r, t)$$

$$\quad + Z(r, t-1)(1 - 2e^{-\lambda gl \delta})e^{\lambda gl s(r,t)} + 1$$

• Similar to:

 Viterbi \rightarrow probabilistic HMM (forward–backward)

 RNA minimal energy (Zuker) \rightarrow partition function (Vienna)

• Guarantees $\langle e^{1h(0,2N)} \rangle = 1 \Rightarrow \lambda = 1$ independent of scoring system
• Numerical test of hybrid statistics

• 5000 i.i.d. amino acid sequences of length N, PAM-120 scoring matrix, $11 + k$ gap cost

– Score histogram is of Gumbel form

– $\lambda = 1$ for large N

– Even sequence length dependence theoretically understood
• Works even for position-specific scoring systems

• E.g., protein family Hidden Markov Models from Pfam database

Bateman et al., Nucleic Acids Res. 2000

- Score histogram is of Gumbel form
- $\lambda = 1$ within $\pm 10\%$ for all 2,216 models
• How is the performance in terms of sensitivity?

• Test algorithm on standard database: PDB90D-B

• Use SCOP as “gold standard” (known relations between sequences)
 Murzin et al., J. Mol. Biol. 1995
 – Do pairwise alignments of all sequences in database
 – Vary p-value cutoff and measure

\[
\text{Coverage} = \frac{\text{Number of relations found}}{\text{Number of total relations}}, \quad \text{Errors per Query} = \frac{\text{Number of wrong relations}}{\text{Number of sequences}}
\]

– Ideal: high coverage at low errors per query

• Hybrid alignment’s sensitivity is at least as good as that of other methods

![Graph](image)
Conclusions and outlook

- Sequence alignment is **standard tool** in molecular biology.
- Sequence alignment algorithms rely on **dynamic programming methods**.
- **Statistics** of sequence alignments are important and poorly understood.
- Statistical physics methods can be applied to characterize and improve sequence alignment.

Future directions
- Other analytical solutions for λ
- Better importance sampling to estimate λ
- Incorporate hybrid algorithm into PSI-BLAST
- Statistics of other algorithms of computational biology (RNA folding, gene finding, clustering, ...)