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ABSTRACT. Let Lo = 2,L1 = 1, and L, = Lp—1 + Ln—2 for n > 2, denote the sequence L of
Lucas numbers. For any modulus m > 2, and residue b (modm), denote by v, (m,b) the number of
occurrences of b as a residue in one (shortest) period of £ modulo m.

In this paper, we completely describe the functions vz (p®,.) for k > 1 in the cases p = 2 and
p = 5. Using a notion formally introduced by Carlip and Jacobson, our main results imply that £
is neither stable modulo 2 nor modulo 5. This strikingly contrasts with the known stability of the
classical Fibonacci sequence modulo these both primes.
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1. Introduction and results

Niven [9] introduced the notion of uniform distribution of a sequence of integers as
follows. Let A = (apn)n=0,1,.. be such a sequence and m > 2 an integer. A is called
uniformly distributed modulo m (in the sequel mostly: u. d. mod m) if

A}i_r)noo%-#{n<N:anEb(modm)}:%

holds for any b € {0,...,m — 1}. Sequences that are u. d. mod m are, e.g., of interest
in the construction of numerical random number generators as for such a sequence
the a,/m are candidates for pseudo-random numbers uniformly distributed in [0, 1].
In this context it is specifically important to know under which conditions sequences
defined by recurrences are u. d. mod m [4].

A decade after Niven’s paper, Kuipers and Shiue [6] proved that the sequence
L = (Ly)n=0,1,... of Lucas numbers, defined by

(1) Lo:=2,L1:=1, Lpys:=Lpt1+ Ly (n > 0),

is not u. d. mod m for any integer m > 2. In the case of the Fibonacci sequence
F = (Fu)n=0,1,..., defined by

(2) Fo:=0, F1:=1, Fyo :=F41 + F, (n > 0),



combination of work done by Kuipers and Shiue [7] and by Niederreiter [8] implied
that F is u. d. mod m if and only if m = 5%, k € N := {1,2,...}. An independent
proof of this fact can be found in [1].

Almost at the same time when Niven’s article [9] appeared, Wall [12] proved that
second-order linear recurrences A of type ant2 = ant1 + a, (n > 0) with arbitrary
integer initial values ag,a; are simply periodic if reduced modulo any m € N. He
explicitly determined the period length h4(m) of A mod m in terms of ag,a; and m.
In particular, his Theorems 5 and 9 imply

hre(28) = he(2%) =321 hp(5F) =4-5% he(5%) =451

for any k € N. Clearly, if such a special linear recurring sequence A is u. d. modulo
some m € N, then m divides h4(m). Hence we see (what we already know from the
above quotation) that the Fibonacci sequence is not u. d. mod 2* whereas the Lucas
sequence is neither u. d. mod 2¥ nor mod 5*. On the other hand, combination of
Wall’s formula hz(5%) = 4 - 5% with Niederreiter’s result on the uniform distribution
of F mod 5* means that every b € {0, ..., 5* — 1} appears exactly four times as residue
mod 5* in the period of F mod 5*. But in the case of moduli m that are not pure
powers of 5, the distribution of the residues mod m in a period of F mod m was
relatively unexplored until the early 1990s.

At that time, Jacobson [3] explicitly described the function vz (2%, b), b€ {0, ..., 2% —
1}, for every k € N. Here

va(m,b) == #{n|0 <n < ha(m), a, = b(mod m)}

denotes the number of occurrences of the residue b mod m in the period of a recurring
sequence A as above. Jacobson remarked in his introduction ‘What makes this [com-
plete description of vz (2",.)] possible is a type of stability that occurs when k > 5.
This stability does not seem to appear for primes other than 2 and 5. The precise
definition of stability, not yet formally given in [3], depends on the set

(3) Qa(m) :={va(m,b)|be{0,....,m — 1}}

for all frequencies of residues mod m in a full period of A mod m. According to
Carlip and Jacobson [2], a sequence A is said to be stable modulo a prime p if the-
re is a kg € N such that Q4(p*) = Q4(p*) holds for all integers k > ko. In these
terms, we note Qx(2¥) = {0,1,2,3,8} for every k > 5 as a consequence of Jacob-
son’s main result in [3], whence the Fibonacci sequence F is stable modulo 2. Note
also Qz(5%) = {4} for every k € N, and, more generally, Q2 4(m) consists of just one
element if and only if A is u. d. mod m. Thus, one could say that the concept of
stability was introduced to generalize uniform distribution modulo prime powers.



Since computation of the residue distribution of a stable sequence requires only
a finite computational procedure, stability became an important tool in the study of
frequency distribution. Thus, during the last decade, there appeared a series of papers
on stability mod 2 of second-order linear recurrences A of the slightly more general
type than above, namely a,+2 = Aan4+1 + Ba, (n > 0) under various conditions
on the integers A, B but in the uppermost number of cases with initial conditions
ag = 0,a1 = 1. Other articles examined stability modulo odd primes p. E.g., Somer
and Carlip [11] exhibited several classes of second-order linear recurrences failing to
be p-stable and provided sufficient criteria for such recurrences to be p-stable.

The aim of the present paper is to describe completely the function v (p*,.)
for p = 2 and p = 5. We begin with the case p = 5, which, according to general
philosophy, should be the ‘simpler’ one, 5 being a divisor of (in fact, equal to) the
discriminant of the companion polynomial X2 — X — 1 of the recurrence in (1).

THEOREM 1. Suppose that k € N. Then, for every b from the least nonnegative
residue system mod 5¥, one has

BIUF=DLif b= Lgjuj; (mod 5), j € {0,1,2,3},

¢ if b= ‘  pk—20-1 .
(4) U£(5k7b): 2.5 s Zf b:L2,5Zj+5k—l—1iI; 1€ {071}7 0 §j<5 , 5/{/]
for some £€{0,..., [5] — 1},
0 otherwise.

REMARK 1. Plainly, the second-mentioned case in (4) occurs only if k > 2. It is also
evident that, in this case, exactly 8 - 5¥72~2 mod 5* pairwise incongruent b’s appear
on the right-hand side of (4).

REMARK 2. A simple calculation shows that, for given k& € N, the third case in (4)
holds for exactly %(2 5% —9 —2.(=1)*) > 0 values of b. Hence asymptotically two

third of the b’s do not occur as a residue mod 5% of any L,,.
By this last observation and definition (3), we immediately obtain
Qr(5F) = {0,2,2-5,...,2 - 5lk/A-1 5lk=1)/2]y
if £ > 2, and Q,(5) = {0,1}. This has the following consequence.

COROLLARY 1. The Lucas sequence is not stable modulo 5.

Next we come to the powers of 2.



THEOREM 2. Suppose k € N,k > 3. Then, for every b in the least nonnegative
residue system mod 2F, one has

1, if b=1 (mod 4),
3, if b=3 (mod 4),
2, if b=4 (mod 8),

ey ) 2FALif =2,

(5) ve(27,b)= olk/2) if b= 22k=1/2 L9 gnd k > 5,

16,  if b=18 (mod 128) and k > 7,

2t if b=5-22"142 (mod 2271) for somel€ {5, ..., 5]},
0 otherwise.

REMARK 3. We do not include here the values of v, (2,b) and v, (4,b) for b= 0,1
and b = 0,1, 2, 3, respectively. Clearly, the case covered by line 7 of formula (5) can
occur only if k > 9.

REMARK 4. Since the values of £ mod 4 start with 2,1,3,0,3,3 and then repeat, one
has the following equivalences

Ln =1 (mod4) < n=1 (modH6),
L,=3 (mod4) < n=-1,£2 (mod 6),
n_4(mod 8) <« n=3(mod 6),

L, =2 (mod 16) < n =0 (mod 6),

the third and fourth one being true by our Lemma 4, (ii) and (iii), respectively. Thus,
the first three lines on the right-hand side of (5) refer exactly to the n # 0 (mod 6),
whereas the lines 4 to 7 deal with the n € {0,...,3 - k-1 _ 1} divisible by 6. On
the other hand, looking at the b’s on the right-hand side of (5), we notice that in
line 8 occur all b, which are congruent to 0 or 6 mod 8, all that are congruent to 10
mod 16, and exactly those congruent to 2 mod 16 not occurring in lines 4 through 7.
Moreover, an easy calculation shows that, for any £ > 9, the case in line 8 holds for
exactly (143 - 2876 — 15+ (—=1)*) > 0 values of b. Hence asymptotically about 37 %
of the b’s do not occur as residues mod 2¥ of any L,,.

By this last statement and definition (3), we obtain
Qp(2%) = {0,1,2,3,2%,2° . 2lk+1)/2])

for any k > 9. Clearly, the sets Q,(2) can be written down for k = 1,..., 8, too. This
has the following consequence.

COROLLARY 2. The Lucas sequence is not stable modulo 2.



Of course, it would be interesting to determine, e.g., the function v, (3",.) simi-
larly to our Theorems 1 and 2. Our own experience with this problem is not just
encouraging. In this context, the reader may compare the very partial results on
vr(3F,.) in [10].

2. Some lemmas on Fibonacci and Lucas numbers

Let o := (1 +V/5),8 := 1(1 — v/5) denote the roots of the common companion
polynomial X2 — X —1 of the Fibonacci and Lucas recurrence. Hence we have o2 =
a1 4 o™ for every n € Z and the same equation with 3 instead of a. Defining, for
each n € Z,

o an_ﬂ’ﬂ
(6) = ——

then the ®’s and A’s satisfy the recurrences

A, =™+ 6",

(I)n+2 = cI)n—i—l + ®p, An+2 = An—|—1 + Ay

and the initial conditions ¢ = 0, ®; =1 and Ay = 2, A1 = 1, respectively. Using (6)
and a3 = —1 we easily find ®_,, = (—1)""1®,, A_,, = (~1)"A,, for any n € Z. Com-
paring this last fact with the definitions in (1) and (2), we obtain ®,, = F,,A,, = L,
for all n € Ny := NU{0}. Therefore, we may interpret the above ®’s and A’s as ‘con-
tinuation’ of the F’s and L’s from Ny to Z. This justifies to use the notations Fj, and
L,,, from now on, for the expressions on the right-hand sides in (6) for arbitrary n € Z.

Our first auxiliary result provides us with an expression for differences of Lucas
numbers, and this will turn out to be a basic tool in our inquiry.

LEMMA 1. For all s,t € Z of the same parity, the following alternative holds.

L,— L = { 5Flsvt) 2l (s—ty2, 1f 4](s—1),
’ Lisroy2Ls—tyy2, it 2| (s —1).

Proof. With ¢ := (s +1)/2, r .= (s —t)/2 & s=q+7r,t=q—r we obtain, by (6)
and af = —1,

Loty = Loy = (@77 = at™0) 4 (3197 — 0177) = a(a” — &,87) + B — era)
— (ot - & 8" — 5 8),

whence our assertion. Note that we obviously put ¢, := (—1)". O



LEMMA 2. If¢ € Ny and if j,h € Z are incongruent mod 4, then
Lsfj ¢ Lsfh (mOd 5)

Proof. According to Lemma 1, the congruence Ly; = L; (mod 5) holds for any ¢ € Z.
On the other hand, we have L; # Lj, (mod 5) since £ has period 4 mod 5 and starts
by 2,1,3,4, whence our assertion. O

The next two lemmas contain some divisibility properties of the Fibonacci and
Lucas numbers. These properties will be of importance in our main proofs to precisely
determine (or, in some cases, to estimate) the exact power of 5 or 2 occurring in the
differences of certain Lucas numbers.

To formulate these statements conveniently, we first give the following definition
(see Koblitz [5]). Let p be any prime number. For z € Z \ {0}, let ¢t € Ny be defined
by the divisibility properties! pt |z, p'*1 Jz. Then we write ord,z for this ¢ and call it
the p-adic ordinal of z, or shortly, the p-order of z. It is obvious that, using this no-
tation, we can write congruences z; = 29 (mod p*) equivalently as ord, (z; — 22) > k
for 21,29 € Z. Note that it is often suitable to define additionally ord, 0 := +o00
for any prime p. Main rules on the p-order as ord, (z122) = ord,z; + ordy 22, or
ord, (z1 +22) > min(ord, z;, ord, 22), the latter with equality if ord, z; # ord,, 22, are
easily checked.

Our next lemma is basic for the proof of Theorem 1.
LEMMA 3. The equation ords F,, = ordsn holds for every n € Z.

Proof. We may suppose n # 0. From Lemma 7 in [1] we immediately deduce ords F,, <
ords n. To get the reversed inequality, we put k := ords n, whence n = 5*j with some
j € Z,5 [ j.From the first formula in (6) we infer the well-known divisibility property
Fsk|Fy, and thus ords Fyr < ords F),. Lemma 6 in [1] says ords Fxr = k such that we
are done. O

Our fourth and last lemma plays an important role in the proof of Theorem 2.

LEMMA 4. For u,v € Z, the following statements hold.
(i) 3lu & 2|F, & 2|L,,
(1) 3|u,6 fu = orde F, =1, ords L, =2,
(iii) 6|u = ords F, >3, ords L, = 1, (more precisely : orde(L, —2) > 4),
(iv) 2|u = ordy F3, =2+ ordyu.
Moreover, if k € N,k > 3, then one has

!Clearly, this means the same as the usual notation p’||z used, e.g., in Lemma 1.



=k for 3 fu,
(v) orde(Lzgr-1,, —Lu) § =k+1 for 3|u,6/fu,
>k+3 for 6]|u.

Proof. (i): This is a consequence of the fact that both sequences F and £ mod 2 begin
with 0,1,1 and then repeat.

(ii): Since F mod 4 begins with 0,1,1,2,3,1 and then repeats, we have F,, = 2 (mod 4)
for odd multiples u of 3. As already noticed in Remark 4, £ mod 4 begins with
2,1,3,0,3,3 and then repeats, whence ordy L, > 2 for these same u’s. In fact, we have
here equality since no residue 0 occurs in £ mod 8.

(iii): From (6) we see F, | F,, for every v # 0 dividing u. Hence Fy = 8 divides F,, if
6 | u. From the reasoning for (ii) we can also see L,, = 2 (mod 4) if 6 | u. The sharpening
of this fact will be proved at the end of (iv).

(iv): We may assume u # 0. Writing u = 2'v with odd v € Z and iterating the
formula Fy, = F,,L,, (evident from (6)) sufficiently often, we obtain

t—1
Fay = Fyprp = Py - [ [ Laoro

7=0

Using (ii) and (iii) this formula leads us to
ordg F3, =1+ (t—1)+2 =2+ ords u.

as asserted. The sharpening of ordy L, = 1 for 6|u can be established as follows.
Note that L, — 2 = L, — Ly equals 5F3/2 or Li/Q according as % is even or odd. In
the first case, we find ords (L, —2) = 2(2 + ord §) > 6 using (iv); in the second case
we get ordy (Ly, —2) = 2ordg L, /o = 4, by (ii).

(v): Lemma 1 and (iv) lead to
Ol”dg (L3,2k—1+u — Lu) = Ol“dg (F3,2k72+uF3,2k72) = Ol“dg F3,2k72+u + k.

If 3 fu, then 2 f Fyor-2,, by (i), and if 3|u,6 J u then 2| F3 k-2, according to
(ii). Finally, 6 | u leads to ords F3.gr—2,, > 3, by (iii). O

3. Proof of Theorem 1

The structure of this proof is as follows. First, we demonstrate two propositions re-
lating to the first and second case in (4), respectively. Both propositions contain the
phrase ‘at least’ twice. Having these results, our final argument implies, at a blow,
1) that all these ‘at least’ can be replaced by ‘exactly’ (hence showing the truth of
formula, (4) in the first two cases) and 2) that v, (5%,b) = 0 for all b’s not appearing
in the first two cases.



PROPOSITION 1. Suppose that k € N. Then there are at least four distinct b €
{0,...,5% — 1} occurring at least 5{5*~D/2 times as residue mod 5% of the L, with
0<n<4-581

Proof. For n,j € Z with 4|n we deduce from Lemma 1

L, si/21; — L2, = 5F,, 0y 1500721 F 2
J J (n/2) J

hence, by Lemma 3,
(7) ords (L, 5ik/2); — Lyprsa;) = 1+ ords (g + 5k/2] j) + ordg,g.

Assuming, moreover, that

(8) ord5g > [—}

we obtain from (7)

k k
ords(Lyysie/a; — Lyir;) = 1+ 2[5] > 14 2(5 - 1) — k-1,

hence
— k
Ln+5[k/2]j = Ls[k/z]j (HlOd ) )

Condition (8) says that 5/*/2 has to be a divisor of the even number 5. Therefore, we
write n = 4-5[F/2.; with some i € Ny, i < 5[*=1)/2 (Note here that [%]4—[%] =k—1
for every k € Z.) Now, for every fixed j € {0,1,2,3}, we then have

0 <n+5F25 = (4i+5) 52 < (4.5[=0/28 g 4 3)5k/2 < 4. 5k1,

According to Lemma 2, the four numbers Lyp/2; (j = 0,1,2,3) are pairwise incon-
gruent mod 5 hence, a fortiori, mod 5* and Proposition 1 is proved. O

PROPOSITION 2. Suppose k € N, k > 2. Then, for every integer £ with 0 < { < %—1,
there eist at least 8 - 5* =22 distinct b € {0, ..., 5F — 1} occurring at least 2 - 5° times
as residues mod 5% of the L, with 0 <n <451,

Proof. For all n € Z with ordsn = ¢, we deduce from Lemmas 1 and 3

Ord5(Ln+4,5k—Z—1 — Ln) = OI‘d5(5F2,5k7£71Fn+2,5k471) =1 + (k — E — 1) + 5 = k,

where we essentially used the hypothesis £ < g -1 & ¢ < k—/{—1. Hence we

have L, 4.5t—¢-1 = Ly, (mod 5%) for all n as before. This means: If we want to count
the integers n with 0 < n < 4-55~! and ordsn = ¢, for which a given b occurs as



a residue of L,, mod 5%, then we may determine the number of such n’s satisfying
0<n <4551 and ords n = ¢, and multiply this number finally by 5¢.
Therefore, we have to investigate the distribution of the 16 - 5¥~2¢=2 numbers

(9) Lye; (0<j<4-58271 5 )j)

J

mod 5*. We assert that half of them, i.e., 8- 5¥72=2 of these L’s, are pairwise incon-
gruent mod 5*, whereas the other half coincides mod 5* with the first half. Of course,
this implies Proposition 2.
We first show
L5£(4 Bk—20—1_ i = L5e (mod 5k)

for the even j as in (9). Indeed, we get from Lemmas 1 and 3
Ord5(L5e(4 sk—20-1_4)— Le; ) = Ord5(5F5Z(2,5k—zl—1_j)F2,5k—£—1) =140+ (k—0—1) = k.

Suppose now that j as in (9) is odd. We write either j = 5¥72¢~14-j or j = 3.5F2-1 4
with |i| < 5¥=2¢=1'5 fi but 2|i. We then have for both A € {1,3}

(10) Ord5(L5e()\,5k—2£—l+i) — L52()\,5k72lfl_i)) = Ord5(5F)\,5k—£—lF5li) = ]{f

Having two j as in (9) but of distinct parity, then the corresponding Ly:; are
incongruent mod 5, and thus mod 5*. Hence we consider the Lge; with 0 < j <
2. 5F=2=1 "5 /4 2|j and we assert that they are pairwise incongruent mod 5*.
Namely, let h,j satisfy 0 < h < j < 2-5F21 5 [ hj, 2|h, 2|j and (w.lo.g.,
compare Lemma 2) 4| (j — h). Again according to Lemmas 1 and 3, we find

i+ h

—h
—I-d52

(1].) Ord5(L5ej — L5Zh) :01“d5(5F5e(j_h)/2F5e(j+h)/2) 1+2€+Ord5

where the inequalities 0 < % < # < 25821 hold. By 5 / hj, at most one of
the quotients u, M is a multiple of 5. If this happens for none of these quotients,
then (11) implies

Ol"d5(L5e i — Lgep) =1+20< k-1,

j+h j+h
o=

by our condition on £ in Proposition 2. Assume now w := ords’5~ € N hence
o5 with o € N, 5 J«. This implies a-5% < 2-5¥~2=1 and therefore w<k-20-1,
where we are going to exclude equality. Namely, if w = k — 2¢ — 1, then a = 1 hence
j4+h=2.5"21 from j — h = 4/ with some 3 € N we would get j = 5*72-1 423,
hence j would be odd. We thus obtain w < k — 2¢ — 2, whence the estimate

(12) Ord5(L52]—L52h):1+2£+0+w5k—17
from (11), and this means

(13) L5ej :7é L5lh (mOd 5k)



Ifo .= ordg,% € N, then w = 0 and from 0 < % < 5F=26-1 we conclude & <

k — 2¢ — 2 leading to (12) with w replaced by @.

Next we have to consider odd j’s as in (9). By virtue of the symmetry properties
evident from (10), it is now enough to investigate the case j = 3 - 572" —j h =
5F=2=1 1 g with 0 < g,i < 572~ 5 f gi and g¢,i both even. Since, again w.l.o.g.,
we may assume 4| (j — h), we conclude from j —h = 25821 — (g + i) that g—“ is
odd leading immediately to g # ¢. Using once more Lemmas 1 and 3, we are led to

g—1

(14) ords(Lse; — Lyey) = 1+ 20+ ords (5521 = & ‘; =)

)+ ords(2- 55271 4
Here we distinguish the two cases according as the nonzero integer gT_i is or is not
a multiple of 5. In the second case, the last summand on the right-hand side of (14)
vanishes, Whereas the next to the last is less than k — 2¢ — 1, whence (13). But if 5
divides g *, then it cannot divide g“ by 5 / gi, and the third summand on the right-

hand 31de of (14) vanishes. From 0 < \ < 5*726=1 we obtain ords 4 < k—20—1,
hence again (13) from (14). O

FINAL ARGUMENT. The fact that in the three cases for b occurring in (4) the
inequalities

(15) ve(5%,b) > 5D (5% b) > 2 5% or v (5%,0) >0

hold, follows from Propositions 1, 2 or is a triviality, respectively. Thus, we obtain

after a minor calculation using again [*51] + [4] =k — 1

5k_1 [k/2]—-1
> o(sk ) =450 LN (2050 (8 5K ) =458
b=0 /=0

But the sum on the left-hand side trivially equals h.(5%), which is 4 - 5¥=! according
to Wall’s formula quoted in our introduction. Therefore, we have equality in (15)
for every residue b mod 5%, no matter which one of the three cases applies, and this
proves Theorem 1.

4. Proof of Theorem 2

Once and for all, we suppose k > 3 in this whole section. The structure of the proof
is similar to that of Theorem 1 apart from one minor point. Namely, here we directly
prove equalities for vz (2%,b) for all b # 2 (mod 16) (see Propositions 3 and 4), whe-
reas lower bounds for v, (2%,b) will appear, again as intermediate results, only for
b =2 (mod 16) (see Propositions 5 through 8).

10



Our first result will cover just the case of odd b’s in (5).

PROPOSITION 3. For every d € {1,2,4,5}, the numbers L, withnc{0,...,3-281 -1}
and n = d (mod 6) are pairwise incongruent mod 2F.

Applying this to d = 1 and d € {2,4,5}, respectively, and taking the first two
equivalences of Remark 4 into account, we deduce v, (2F,b) = 1 for b = 1 (mod 4)
and vz (2%,b) = 3 for b = 1 (mod 4). These are just the first two lines of formula (5).

Proof. We have to show that the Lg; 4 with 0 < j < 2F=2 are pairwise incongruent
mod 2*. To this purpose, let 0 < i < j < 2¥~2 and consider?

5F3(j1i)+ak3(j—iy 1f j—iis even,

16 Lgirq — Leitqa = e
(16) 6j+d — H6i+d {L3(j+i)+dL3(j—i) if j —iis odd,

according to Lemma 1. By Lemma 4 (i), both of F5(;1) a, L3(j+i)+a are odd. If j —i
is even, then the first alternative in (16) leads to

OrdQ(L6j+d - L6i+d) = Ol“dQ F3(j—i) =2+ OrdQ(j - i),

where we used Lemma 4 (ii). Since 0 < j — i < 272 we have ordy(j — i) < k — 3
hence

(17) Lejia # Leiva (mod 2%).

If j — i is odd, then the second alternative in (16) and Lemma 4 (ii) together imply
orda(Lejrq — Leira) = orda La(j_;) = 2,

which is less than k, whence again (17). O

Our next result will cover just the case b =4 (mod 8) in (5).

PROPOSITION 4. All b € {0,...,2F — 1} with b = 4 (mod 8) occur ezactly once as
residue mod 2% of some L, with 0 < n < 3-25"2 and n = 3 (mod 6). Moreover, for
these n, the following congruence holds

(18) Lyok—2,, = L, (mod 2F).

With the third equivalence of Remark 4 in mind, Proposition 4 says nothing but
v (2F,b) = 2 for b =4 (mod 8).

*We note here for later purposes that (16) holds for any d € Z.

11



Proof. We have exactly 273 residues b as specified and the same number of n’s men-

tioned in the first sentence. Since L3 = 4, Ly = 76 show the truth of the proposition
for k = 3, we may assume k > 4. To see the truth of the first assertion, we shall apply
(16) with d =3 and 0 <4 < j < 2F73.If j — i is even, then 3(j +i+1) = 3 (mod 6),
hence ordy Fy(j4;41) = 1 by Lemma 4 (ii), and the first alternative in (16) leads to

ord2 (L6j+3 — L6i+3) =1+ OI'dg F3(j—i) =3+ Ol'dg (j — Z)

using also Lemma 4 (iv). Since ords (j —7) < k—4 we get (17) with d = 3. In the case
of odd j — i, the number 3(j + 7 + 1) is a multiple of 6, whence ords Ls(j1i+1) = 1,
by Lemma 4 (iii). The second alternative in (16) combined with 3(j —¢) = 3 (mod 6)
then leads to

ordg(L6j+3 — L6z’+3) =1+ ordy L3(j—z') =3,

by Lemma 4 (ii). Since we assumed k > 3, (17) holds also in this case.
To prove (18) for the n’s as specified there, we note

L6(2k*3+j)+3 — Lej+3 = 5F3(2j+2k*3+1)F3v2k*3

since 3-2%73 is even, by k > 4. In virtue of 3(2j +23+1) = 3 (mod 6) and Lemma,
4 (ii),(iv), we infer from the last equation

OI'dQ(LG(Qk—3+j)+3 - L6j+3) =1+ (k - 1) = k?

whence (18). O

The following Propositions 5 through 8 all concern the remaining case b = 2 (mod
16).

PROPOSITION 5. For all n = 3 - 2[(k=D/2)5 with 0 < j < 2I¥/2] the congruence
(19) L, =2 (mod 2¥)
holds. This implies vy (2F,2) > 2[F/2,

Proof. For k = 3 and k = 4, one can directly check the Lg; with 0 < j <2 and 0 <
j < 4mod 8 and mod 16, respectively. Assuming now k > 5, we have £ := [%] > 2,
and hence, by Lemma 1,

LTL - 2 — L3,2£j - LO — 5F32'2Z71j

2(—1

since 3 - j is even. Then Lemma 4 (iv) leads to

OrdQ(Ln — 2) = 20rd2 F3,2Z71j > 2(€ + 1) >k — 1,
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whence (19). O

PROPOSITION 6. Suppose k > 5 and define { := [%] Then the congruences mod 2%
(20) Lyge-r =22 42, Lyge1(gj1) = Lo (J € Z)
hold implying vy (2F,22(k=D/2 4 9) > olk/2],

Proof. If £ > 3 < k > 7, then we have with some odd integer u
Ly — Lo =5F} 52 = (1 +4)- (2°u)? = 2% (mod 2272),

by Lemma 4 (iv). Since 2(¢ + 1) > k we have the first congruence in (20). Note that
Lg = 18 gives its truth also for kK =5 and k =6. If £ > 5 < ¢ > 2, then the second
congruence in (20) is obtained from

OrdQ(L3,2571(2j+1) — L3,2£—1) Z 2(€ + 1) + 1 > k

for all j € Z.
To get the final implication, note that, for the integers j with 0 < j < 2F—¢=1,
the number 3 - 2/=1(25 + 1) belongs to {0, ...,3 - 2¥=1 —1}. O

PROPOSITION 7. For k > 7 one has the following assertions.

a) The numbers Lisjie with 0 < j < 26=7 are pairwise incongruent mod 2F; these
are, in some order, congruent to the distinct b< {0, ...,2% —1} with b = 18 (mod 128).
b) L12(2k*6—j)—6 = L12j+6 (HlOd Qk) forall j € Z.

¢) Lyor-a,, = Ln (mod 2¥) for all multiples n of 6.

Together these statements imply vo(28,b) > 16 for any b= 18 (mod 128).

Proof.a) Here we may suppose k > 8. With 0 < i < j < 2¥~7 we consider the
equation

(21) Li2j6 — Li2ive = 5Fs(j4iv1) Fo(j—i)-

Exactly one of the numbers j + i 4+ 1 bzw j — ¢ is odd, and the 2-order of the
corresponding F equals to 3. On the other hand, we find 0 < j—i < j+i+1 < 2876,
Hence the 2-order of the Fp( ) with the even (...) is less than or equal to k — 4. Thus,
(21) leads to our first claim. As to the second one, we apply (21) with ¢ = 0 to find

0rd2(L12j+6 — 18) = ordy Fﬁ(j+1) + ordsy Fﬁj =4 + ordy 2(] + 1) 4+orde2j > 7

since j or j + 1 is even. Therefore, we obtain L1216 = 18 modulo 27 = 128.
b) By L_,, = L, for even n, it is enough to consider the difference

Lgor-1_(12j+6) = L—(12j+6)-
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According to the third case of Lemma 4 (v) its 2-order is at least k.
c) Again by Lemma 4 (v), the difference Lzgr—1,,, — Ly has 2-order at least k since
n is divisible by 6.

To obtain the final conclusion, notice that, among the Lizj4¢ with 0 < j < 2k=6
each b as in a) occurs exactly twice as residue mod 2%, by b). Using c¢) we next
deduce from this last fact that, for every ¢ € {1,...,8}, there are exactly two j €
{(t—1)-2k=6 .. ¢+-28=6 — 1} such that the corresponding Lj2;4¢ are congruent mod
2 to a given b as in a). (Note 12- (8 -2¥6 —1) + 6 = 3.2~ — 6 is the last odd
multiple of 6 less than 3 -2F~1)) O

PROPOSITION 8. Ifk > 9, then, for every ¢ € {5, ..., [k—gl]}, the following statements
hold.

a) For any j € Z, one has
(22) L3'2273(2j+1) = 5 . 22Z_4 + 2 (mod 226_1).

2]@—2@—!-1

b) The numbers Lg.gc—3(j41) with 0 < j < are pairwise incongruent mod 2%

¢) For all j € Z, one has the congruence

L3,2Z73(2k725+3_2j_1) = L3~2573(2j+1) (mod Qk)

d) For all j € Z, one has

Ly.or-ty3.90-302j41) = La.at-32541) (mod Qk)-

All these claims together imply vp (28,5 - 2274 +2) > 26,

Proof. a) Notice first that, using Lemma 4 (iv), we have with some odd u
Lyges — Lo=5F2, , =5-(27%)? =5.227* (mod 2*71),
which is (22) for j = 0. Furthermore, we find from

L3-2f*3(2j+1) — L3ge-s = 5F3v2‘3*3(j+1)F3-2‘*3j

that the 2-order of this difference is at least 2¢ — 1, whence (22) for any j.

b) If k£ is odd and ¢ = (k + 1)/2, then there is nothing to be proved. But if
{0,..., 2872641 _ 1} contains two distinct numbers, say, 0 < i < j < 28721 then we
consider

L3.9e-3(9j11) = La.ot-3(2i41) = 930035 4i41)F30t-3(j_4).-

The 2-order of this difference is at most 2(¢ — 1) + (k — 2¢ + 1) = k — 1 since
0<j—i<j+i+1< 2572042 and exactly one of the numbers j +i+1,j — i is odd.
c) From

L3,2k—(8_3,2573(2j+1) - L3~2573(2j+1) — 5F3,2k7£71F3,2k—€—1_3,22—3(2j+1)
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we see that the 2-order of the difference is at least (k — ¢+ 1)+ ({ — 1) = k.
d) Starting from

Lyor—ey3.90-302j11) = La.oc-3j41) = 5F3.00—c-1 Fyon-t-1,3.90-3(9541)

we conclude as in c).

The subscript 3 - 2673(2j + 1) of the Lucas number in (22) belongs to {0,...,3 -
2k=1 _ 1} if and only if 0 < j < 2871, According to a) and b) there is exactly one
jo € {0,...,28=241 _ 1} for which the corresponding L3.9¢-3(2j,41) 1s congruent to
5- 224 4+ 2 mod 2*. The above set {0,...,28=*1 — 1} decomposes into 2 disjoint
subsets of successive integers of the form Sy := {\- 28726+ (A 41)-2k2641 _ 1}
with A = 0,...,2° — 1. Then c) and d) imply that, in each of these Sy, there is exactly
one jy such that Ls.oe-3(95, 11y is congruent to 5- 226=1 1 2 mod 2*, whence the lower
bound for v, (2%, 5 - 22¢7% + 2). Notice that our information on the j is much more
precise (than only j) € S)) as far as the exact position of j in Sy is explicitely
determined by the position of jg in Sp. O

FINAL ARGUMENT. According to our statement directly after Proposition 3 and
at the end of Proposition 4, we have

> v =122 432" 2420k 5. 082,
0<b<2k
bZ2 (16)

Using this and Wall’s formula hz(2F) = 3 - 281 we obtain

(23) > wp(2kb) =282

0<b<2k

b=2 (16)
Now, for k = 3 and k = 4, the equality 2¥=2 = 2[/2 holds, whence, by (23) and
Proposition 5, vz (2F,2) = 2[5/21 and v, (2%,b) = 0 for all b = 2 (mod 16), b # 2. Next,
for k = 5 and k = 6, we have 2[k/2 4 9lk/2] — 9k=2. therefore (23) and Propositions
5 and 6 imply v, (2F,b) = 20F/2 for b € {2,22(k=1/21 4 21 and v (2%,b) = 0 for all
other b = 2 (mod 16). If & > 7, then the b’s in the sixth line on the right-hand side
of (5) are just the 1285 + 18 with 0 < j < 2¥=7. For k = 7 and k = 8, one sees
2. 2F/2 4 16 . 25=7 = 2+=2; plainly, we use here (23) and Propositions 5, 6 and 7 to
conclude. Suppose finally k£ > 9. Note that the b’s in the seventh line in (5) can be
written, for every ¢ € {5,...,[(k + 1)/2]}, in the form

22é—lj 4 5 . 225—4 4 2 (0 SJ < 2k—2f+1).

Then, by Proposition 8, the contribution of line 7 to the left-hand side of (23) is at

least
[(k+1)/2]

Z 25 . 2k—2£+1 — 2k—3 _ 2[k/2]+1
/=5
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Thus, for k£ > 9, the contribution of the b’s specified in lines 4 through 7 of (5) to the
left-hand side of (23) is at least

22216 2T 4 (2873 — 9. ol/2l) = ok 2,

This means that all lower bounds for the v, (2*,b) appearing at the end of Propositi-
ons 5 through 8, in fact, are equalities and, moreover, that v.(2%,5) = 0 holds for all
residues b mod 2* not mentioned in lines 4 through 7 of formula (5).
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