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Abstract. The physics of the base-pairing interaction in DNA and RNA molecules plays a fundamental
role in biology. Past experimental and theoretical research has led to a fairly complete and quantitative
understanding of the equilibrium properties such as the different phases, the melting behavior, and the
response to slow stretching. The non-equilibrium behavior is even richer than might be expected on the
basis of the thermodynamics. However, the non-equilibrium behavior is also far less understood. Here,
we review different theoretical approaches to the study of base-pairing thermodynamics and kinetics, and
illustrate the rich phenomenology with several examples that use these approaches.

PACS. 87.15.Cc Folding and sequence analysis – 87.15.He Dynamics and conformational changes –
87.14.Gg DNA, RNA

1 Introduction

The base-pairing interaction in DNA and RNA is a proto-
typic example of molecular recognition in biology. On the
one hand, base-pairing is remarkably simple, with a rel-
atively small and well-defined set of interactions between
the four different chemical monomers of these heteropoly-
mers. On the other hand, this interaction gives rise to the
amazingly complex physical and biochemical properties of
DNA and RNA, which appear to be exploited by nature
in almost every possible way [1]. It has long been appre-
ciated that DNA is uniquely suited for reliably storing
genetic information while keeping it accessible for readout
(transcription), copying (DNA replication), cut & paste
(DNA recombination), and repair. In contrast, the role of
RNA in molecular biology was long seen merely as messen-
ger of genetic information. However, a series of discoveries
in the past 20 years revealed important enzymatic and
regulatory functions that moved RNA into the spotlight
today [2]. Here, our focus is on the physical properties of
DNA and RNA emerging from the base-pairing interac-
tion, and their biological ramifications.

Clearly, the biochemical properties of DNA and RNA
are equally important as the physical properties and some-
times essential to understand the function, as in the case
of RNA enzymes [3]. However, we will argue here that
much can be learned already from the thermodynamics
and kinetics of base-pairing. To this end, it is instruc-
tive to consider a few biological examples, which illus-
trate the functional role of these physical properties. One
well-documented case is the heat-shock response of E.

coli, where the base-pairing pattern of a messenger RNA
(mRNA) acts as a molecular thermosensor [4]: When the
bacterium is exposed to a heat shock (e.g. temperature
rise to 42oC), it quickly starts producing a set of heat
shock proteins. The trigger for this emergency response
is the upregulation of a single protein concentration (the
sigma factor σ32), which controls the production of all
heat shock proteins. At normal temperatures, the mRNA
of σ32 has a stable base-pairing pattern in the vicinity of
the translation start, thereby masking the ribosome bind-
ing site and suppressing translation initiation. However, at
an elevated temperature, the secondary structure melts so
that the ribosome binding site becomes accessible and the
mRNA is translated at a high rate. Thus, in this example
the thermodynamics of base-pairing provides an essential
function.

Similarly, there are examples where base-pairing ki-
netics plays a functional role [5–7]. One well-studied case
occurs in the RNA bacteriophage MS2, a virus with an
RNA genome that infects bacteria such as E. coli [5]. Since
the genome also acts as mRNA, any control of gene ex-
pression must be at the level of translation. Indeed, the
expression of its small set of four genes is controlled to as-
sure proper timing and quantities of the protein products
which guide MS2 reproduction. In particular, the matura-
tion gene must be expressed only in a short time window
after MS2 is synthesized in the invaded bacterium. Na-
ture’s solution is a slow-folding secondary structure at the
translation start site [5]: When the secondary structure
has correctly folded, it is thermodynamically stable and
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shuts down translation by masking the ribosome binding
site. However, directly after synthesis, the structure has
not yet formed and translation takes place. The structure
is slow-folding because of an alternative base-pairing pat-
tern that acts as a kinetic trap.

The thermodynamics and kinetics of base-pairing is
evidently fundamental to the ubiquitous problem of RNA
folding. In many cases, the function of RNA molecules re-
quires a well-defined three-dimensional (so-called tertiary)
structure, which involves other interactions besides base-
pairing [8]. However, the formation of secondary structure
(i.e., base-pairing) is not only a prerequisite for the for-
mation of tertiary structure, it can also be studied inde-
pendently, since tertiary interactions are dependent on the
presence of divalent Mg ions, which can be removed in ex-
periments. Indeed, due to the ongoing advances in single
molecule techniques, the dynamics of RNA folding is be-
ing probed in increasing detail, providing possibilities for
a fruitful interplay between theory and experiment [9–11].

Here, we give a perspective from the viewpoint of the-
ory. The discussion is organized into two main sections.
Section 2 is dedicated to the thermodynamics of base-
pairing while Section 3 focuses on the kinetics of base-
pairing. Each of these two main sections starts with a
presentation of the main concepts and methods used to de-
scribe the respective phenomena. Then, these approaches
are illustrated using specific examples. Given the breadth
of the field we did not attempt to exhaustively cover all
the interesting physics of base-pairing but instead picked
examples that illustrate our point and that certainly are
a reflection of our own taste. Section 4 concludes the dis-
cussion by summarizing our main point again.

2 Equilibrium properties

Base-pairing in nucleic acids is the formation of hydro-
gen bonds between the individual monomers of a DNA
or RNA molecule. These monomers are guanine (G), cy-
tosine (C), adenine (A), and tyrosine (T) in the case of
DNA. In RNA, tyrosine is replaced by the base uracil (U).
The most frequent and most stable form of base-pairing
are the Watson-Crick base-pairs G–C and A–T (or A–U
in the case of RNA). However, also the wobble base-pair
G–U frequently occurs in natural RNA structures. Other
types of base-pairs are less stable but nevertheless occur
occasionally, especially if they are stabilized by neighbor-
ing Watson-Crick base-pairs.

2.1 Energetics of base-pairing

Before embarking on a discussion of the physics that base-
pairing in DNA and RNA brings about, we want to give
an overview of the microscopic models underlying the de-
scription of these emergent properties of DNA and RNA.
Since we are looking for an understanding of the thermo-
dynamics (and later the kinetics) of DNA and RNA from
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Fig. 1. Representation of a base-pairing configuration and dif-
ferent types of loops in a nucleic acid molecule. In a realistic
energy model, each base-pair stacking and each loop is assigned
an effective free energy which depends on the identities of the
bases and the type and length of a loop. The total free en-
ergy of a base-pairing configuration is then approximated as
the sum of the individual free energy contributions.

the base-pairing level, “microscopic” means that we asso-
ciate an individual state of the molecule with every possi-
ble base-pairing pattern. In a double-stranded DNA mole-
cule each base has its designated “partner base” to which
it can either be bound or not. Thus, a state can naturally
be described by assigning an Ising variable to each base-
pair along the chain the two states of which are “closed”
and “open”. For RNA molecules (or single-stranded DNA
molecules) although each base can still bind to only one
binding partner at a time, each base has the possibility
to form this pair with many different potential binding
partners. In this case a state of the molecule is more con-
veniently described by the list of the base-pairs that have
formed. A more visual representation of such a state is by
a diagram of the kind shown in Fig. 1.

Once the states of the statistical mechanical descrip-
tion are chosen, each of them has to be associated with an
energy in order to model the thermodynamics of the sys-
tem. For each base-pairing configuration there are many
different true microstates of the system such as different
spatial configurations of the molecule and different config-
urations of the surrounding water molecules and counter
ions. Thus, the energy associated with a base-pairing con-
figuration is actually an effective free energy which is ob-
tained by integrating out all degrees of freedom of the
molecule and the solvent while the base-pairing configu-
ration is held fixed.

Since it is currently not possible to derive these ef-
fective free energies from first principles, one resorts to
a variety of different energy models. The crudest effec-
tive free energy model simply assigns a constant effective
binding energy to every closed base-pair, i.e., the effective
free energy of a state is proportional to the number of
base-pairs in this state. This model, which we will refer to
as the “uniform pairing” energy model, is useful if qual-
itative features of base-pairing are studied. Its simplicity
lends itself to analytical approaches. If one is interested
in qualitative effects of sequence heterogeneity, a simple
extension of this model still assigns an individual contri-
bution to the total effective free energy to each base-pair
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but uses different energies depending on the type of the
base-pair. This reflects the fact that G–C base-pairs are
more stable than A–T base-pairs which in turn are more
stable than the G–U base-pairs. We will refer to this model
as the “sequence-dependent pairing” energy model.

While the above free energy models are very useful
in order to study qualitative features of the physics of
base-pairing, they lack many of the details that govern
the more quantitative aspects of base-pairing. One impor-
tant detail is that the largest stabilizing contribution to
the effective binding energy of a base-pair actually does
not come from one base-pair alone but from the stacking
of two neighboring base-pairs. Thus, more realistic energy
models attribute their additive contributions to the to-
tal effective free energy not to the base-pairs but to the
stacks of consecutive base-pairs, resulting in the “uniform
stacking” and the “sequence-dependent stacking” energy
model respectively depending on the fact if this stacking
energy depends on the identity of the four bases involved
in the two base-pairs or not. For this sequence-dependent
stacking energy model the stacking energies for all possi-
ble combinations of two consecutive base-pairs have been
measured extensively for DNA [12] as well as for RNA [13].

Another aspect that makes effective free energy mod-
els more realistic is the way in which they take the entropy
resulting from the spatial degrees of freedom of the back-
bone into account. Each base-pairing imposes further con-
straints on these spatial degrees of freedom. After integrat-
ing the spatial degrees of freedom out, these constraints
translate into a repulsive entropic contribution to the ef-
fective free energy. The extensive part of this entropy (i.e.,
the reduction in entropy per base due to the binding of a
base-pair) can be taken into account in the effective bind-
ing energy for each base-pair or base stacking and merely
changes the numerical values of the binding energy pa-
rameters in the models discussed above. However, there is
an additional loss of entropy upon binding of a base-pair
associated with the unbound bases which without the for-
mation of this base-pair would have fluctuated freely but
are forced to form a loop (see Fig. 1) once the base-pair
is closed. The asymptotic (large loop length) form of this
loop entropy (in units of kB) is c log ` where ` is the length
of the loop and c is some prefactor. For Gaussian chains
in three dimensions without self-avoidance this prefactor
is c = 3/2 [14] but self-avoidance increases this value [15]
and there is some debate as to by how much [16]. If this
effect is taken into account in an energy model we will
indicate this by appending the term “with loop entropy”
to its name.

The most detailed free energy model still starts from
the assumption that the total effective free energy of a
state is the sum of the (sequence-dependent) stacking free
energies of all the stacking pairs and the loop free energies
of all loops of the state (see Fig. 1). While this assumption
is known to be not strictly true (sequences that only dif-
fer in the order in which stackings appear should have the
exact same binding free energy according to this model
but are experimentally known to not have the same bind-
ing free energy [12]) the assumption is still good enough

to produce practically useful quantitative results such as
the prediction of RNA secondary structures from sequence
alone. Instead of using the simple logarithmic free energy
cost for loops realistic models acknowledge that for short
loops effects such as bending energy and partial stacking
of unpaired bases contribute to the effective loop free en-
ergy. Thus, the effective free energy of loops is allowed to
depend on the length of the loop, the type of the loop (see
Fig. 1), and on the identities of the bases in the base-pairs
closing the loop. This results in thousands of free energy
parameters that describe such a model. All these param-
eters are measured by melting small DNA and RNA mol-
ecules with well-defined structures, recording their melt-
ing thermodynamics quantitatively, extracting their total
effective free energies of binding, and reconstructing the
contributions of the individual elements of the structures
using the additive assumption [17]. We will refer to this
energy model short as the “realistic” energy model.

2.2 DNA thermodynamics

2.2.1 Experimental observations

The thermodynamics of double-stranded DNA is a well-
studied subject. Experimentally, the most obvious phe-
nomenon is a melting transition as the temperature of a so-
lution of double-stranded DNA is raised from physiological
temperatures to about 80oC. This melting transition can,
e.g., be observed by measuring chromatic dichroism which
is sensitive to the amount of helical (double-stranded) re-
gions in the molecules. More quantitative information such
as binding energies can be obtained from melting DNA or
RNA in calorimeters. In this setup a peak in the heat
capacity is the signature of the melting transition.

At first sight the radical change in behavior from a
double stranded form to a single stranded form over a
temperature range that is only some 10% of the absolute
temperature at which it happens is surprising. It turns
out to be driven by a subtle balance between entropy and
energy. As discussed above, the effective free energy per
base-pair is the difference between the chemical binding
energy and the loss of entropy associated with the for-
mation of a base-pair. At physiological temperatures both
these quantities are on the order of 10kT [13]. Thus, they
nearly cancel leaving a difference of a few kT in favor of
the chemical binding energy. Thus, upon a relatively small
change in temperature the balance in this cancellation of
two large terms tips. This change in sign of the effective
binding energy per base is what drives the melting tran-
sition. This marginal stability at physiological conditions
is certainly not a coincidence but rather dictated by the
fact that these molecules on the one hand must be stable
enough to store genomic information while on the other
hand many biological processes require the temporary lo-
cal “melting” of DNA or RNA helices.
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2.2.2 Modeling approaches

As discussed above, thermodynamics of double-stranded
DNA can be described by a set of Ising variables. The
uniform pairing energy model translates in the magnetic
analogy into a set of non-interacting spins coupled to an
external magnetic field. Thus, the magnetization (fraction
of helical regions) is a smooth function of temperature
without any phase transitions or even peaks in the heat
capacity. A more successful model of DNA melting uses
the uniform stacking energy model [18]. The stacking in-
teraction between two neighboring base-pairs translates
directly into the usual Ising interaction between neighbor-
ing spins. Thus, this model maps directly onto the one-
dimensional Ising model which shows cooperativity and
thus a peak in the heat capacity. However, the melting
is still not associated with a phase transition which is to
be expected since the Mermin-Wagner theorem [19] allows
phase transitions in one-dimensional systems only in the
presence of long-range interactions. Such long-range in-
teraction is present in the uniform stacking energy model
with loop entropy which is called the Poland-Scheraga
model [14, 20] for double-stranded DNA or in the Peyrard-
Bishop model [21] that explicitly takes into account some
of the spatial degrees of freedom instead of including them
into an effective loop entropy cost. Indeed, these mod-
els predict true phase transitions. In the Poland-Scheraga
model, the order of this phase transition depends on the
prefactor c of the logarithmic loop free energy. The tran-
sition is second order for c < 2 and first order for c >
2 [15]. While it was a major success that the Poland-
Scheraga theory obtained a phase transition at all, mecha-
nisms that explain the experimentally observed first order
nature of this phase transition are still very controversially
discussed [16, 22–27].

While the partition function for the uniform models
such as the Poland-Scheraga model can be calculated ex-
actly analytically, the inclusion of sequence-dependence
requires either approximative [28] or numerical [29] meth-
ods. Conveniently, even for the very detailed realistic en-
ergy model it is possible to calculate the partition function
of a double-stranded DNA molecule of arbitrary sequence
with a time complexity that is quadratic in the length N
of the sequence. This is achieved by calculating the parti-
tion function of all base-pairs 1, . . . , i under the constraint
that base-pair i is closed. If we denote this quantity by Zi,
we find that either base-pair i is the only base-pair among
1, . . . , i that is closed or there must be another base-pair
j which is the last base-pair before i that is closed. This
yields the recursion relation

Zi = 1 + qiZi−1 +

i−2∑

j=1

l(i, j)Zj (1)

where qi is the Boltzmann factor which corresponds to the
stacking energy between the base-pair i− 1 and the base-
pair i while l(i, j) is the Boltzmann factor for a loop of
unbound base-pairs flanked by the closed base-pairs j and
i. Since either one base-pair is the last closed base-pair

or none of the base-pairs are closed, the total partition

function of the molecule then becomes Z = 1 +
∑N

i=1
Zi.

This approach to the thermodynamics of DNA melting
has been widely used to quantitatively model DNA melt-
ing [30–34].

2.3 RNA thermodynamics

2.3.1 Theoretical framework

Studying the thermodynamics of RNA or single-stranded
DNA is more complicated than that of double-stranded
DNA since there is more than one binding partner for each
base. Usually, one restricts the space of all allowed states
to states without pseudo-knots [8], i.e., if (i, j) and (k, l)
are base-pairs with i < k, they have to either be indepen-
dent (i < j < k < l) or nested (i < k < l < j). This re-
striction is justified because pseudo-knots with long helices
require the end of the molecule to be threaded through an
already existing loop in order to be formed which is kinet-
ically very difficult (see Fig. 2) while short pseudo-knots
do not contribute much to the overall free energy and thus
their omission is not too bad an approximation. It should
be said however, that for several biologically important
RNAs pseudo-knots are crucial for their biological func-
tion.

a) b) c)

Fig. 2. Pseudo-knots in RNA structures: The base-pairings
indicated by the arrow in (a) create a pseudo-knot. We exclude
such configurations in our definition of secondary structures:
The short pseudo-knots (called “kissing hairpins”) as shown in
(b) do not contribute much to the total binding energy, and
the long ones shown in (c) are kinetically forbidden since the
double helical structure would require threading one end of the
molecule through its loops many times.

If one excludes pseudo-knots, there is again a recursive
approach to calculating the complete partition function of
an RNA molecule of a given sequence in polynomial time
in the length N of the sequence [35–38]. For the simplest
energy model that assigns only an effective binding energy
to each base-pair (which may depend on the identity of
the two bases involved) and no free energy to the loops,
this recursion can be written in terms of the partition
function Zi,j for the subsequence from base i to base j.
The recursion is obtained by realizing that base j can
either be unbound or bound to exactly one of the bases
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i . . . j − 1 which yields [39]

Zi,j = Zi,j−1 +

j−1∑

k=i

Zi,k−1qk,jZk+1,j−1 (2)

where qk,j is the Boltzmann factor associated with the
binding energy of the base-pair (k, j). The second term
on the right hand side factorizes into the product of two
partition functions because the no pseudo-knot constraint
forbids any base-pairing between a base i . . . k − 1 and a
base k + 1, . . . j − 1. The partition function for the more
realistic free energy model with stacking energies and loop
entropies can be calculated by similar, but more compli-
cated recursion equations. However, in order to still keep
the O(N3) computational complexity some approxima-
tions to the loop free energies have to be made, specifically
the cost of a multi-loop (a loop closed by more than two
base-pairs) has to be assumed to be linear in its length
and the number of closing base-pairs. Nevertheless, nu-
merical tools like mfold [40], the Vienna package [41], and
sfold [42], which rely on this approach are routinely and
successfully used for the computational prediction of ther-
modynamic features of RNA secondary structures by biol-
ogists. However, for short RNA sequences even structure
prediction with logarithmic multi-loop free energies is fea-
sible due to its O(N4) complexity.

2.3.2 Phase diagram of RNA secondary structures

From a more physical point of view one can ask about
the thermodynamic phase diagram of RNA base-pairing.
In this quest Eq. (2) is a starting point both for numer-
ical and analytical approaches. The melting “transition”
has been studied in the uniform stacking energy model
with loop entropy by de Gennes already nearly forty years
ago [35]. This study, which assumes Gaussian statistics for
the loop entropy, i.e., a prefactor of c = 3/2 of the loop en-
tropy, comes to the conclusion that melting in this model
is not a true phase transition although the cooperativ-
ity induced by stacking results in a pronounced peak in
the heat capacity. However, melting becomes a true phase
transition if the prefactor c is larger than 2.

A question that has been studied more recently is if se-
quence disorder induces a phase transition between a low-
temperature glassy phase [43–52] where the thermody-
namic ensemble of structures is dominated by one or a few
base-pair configurations and a high-temperature “molten”
phase where still most of the bases are paired but a very
large number of base-pair configurations coexist (not to be
confused with the “denatured” phase which describes the
phase in which the bases do not form any pairs any more).
In the sequence-dependent pairing energy model such a
transition indeed exists [50]. However, it is not clear if
this transition happens below the denaturation tempera-
ture in realistic energy models or if the real RNA molecule
denatures before the “molten” phase of the base-pairing
configurations is reached.

While these considerations apply to randomly chosen
RNA sequences, the sequences of structural RNAs are cer-
tainly not random but are on the contrary designed such
that the RNA folds preferentially into the “native” struc-
ture it needs to take in order to perform its biological
function. Thus, the degree of sequence design or bias to-
ward the native structure is another parameter the ther-
modynamics of RNA molecules depends on. If the bias is
strong enough one would expect the molecule to go into
a native phase no matter what phase it is in without the
bias. This results in the phase diagram shown in Fig. 3. It
remarkably resembles the phase diagram for proteins in its
general topology (see, e.g., [53]). In this phase diagram the
molten, native, and denatured phase as well as the melting
transition [35], the molten-native transition [54] and the
native-denatured transition [55] can be understood quan-
titatively. In contrast, there is still relatively little known
analytically about the glass phase and the transitions into
it except for its existence itself.

temperature

bias
denatured

molten
native

glass

Fig. 3. Thermodynamic phase diagram of RNA base-pairing.
Completely random RNA sequences (no bias) go from a glassy
phase through a molten phase into a denatured phase as tem-
perature is increased. As the sequence is more and more bi-
ased toward a specific “native” structure, the molecule enters
the native phase where the native structure dominates at all
temperatures.

An open question in RNA structure thermodynamics
is the inclusion of pseudo-knots. Given that in many struc-
tural RNAs pseudo-knots are essential for the biological
function it is an obvious question how to include pseudo-
knots in quantitative analyses of RNA base-pairing con-
figurations. There are several approaches to extend the
thermodynamics framework described above to pseudo-
knots [56–59]. Since including all pseudo-knots is known
to be NP-complete [60], most of these approaches spec-
ify a certain sub-class of pseudo-knots and derive recur-
sion equations of higher but still polynomial complexity
than in the approach without pseudo-knots. However, all
these approaches suffer from the fact that there is no ob-
vious criterion which class of pseudo-knots is a good one
to consider. An additional problem is that no good free
energy parameters for pseudo-knotted configurations are
available, which can be somewhat circumvented by trying
to derive such parameters from more fundamental consid-
erations of spatial entropy [57, 61].
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2.3.3 Single molecule experiments

As single molecule experiments probing the base-pairing
of nucleic acid molecules have appeared [9, 10, 62] the
thermodynamic approach has been applied to these kinds
of experiments as well [63–66]. This makes sense as long
as the time scales probed in the experiments are longer
than the time scales involved in the structural rearrange-
ments of the RNA molecule. This is, e.g., the case in the
early force-extension experiments on RNA [10] and single-
stranded DNA [62]. In these experiments a short RNA
molecule (50 bases) [10] or a very long single-stranded
DNA molecule (50,000 bases) [62] were attached to macro-
scopic objects at both ends as shown in Fig. 4. As the

R
Fig. 4. Sketch of a force-extension experiment (from [64]).
The two ends of an RNA molecule are connected to beads (not
shown to scale). The force required to keep the molecule’s ends
at a given distance R is measured. For a given secondary struc-
ture this force is determined by the mechanical properties of
the m externally accessible bases indicated by the open circles.

distance between these ends is slowly increased the force
required to hold the molecule at a given distance is mea-
sured. The resulting force-extension curve reflects infor-
mation about the base-pairing pattern of the molecule
for very short RNA molecules while for the long single-
stranded DNA molecules a smooth force-extension curve
was observed. These experiments can be modeled by re-
alizing that the mechanical response of a molecule in a
given base-pairing pattern is determined by the mechani-
cal properties of the m externally accessible bases in such
a structure (see Fig. 4). Thus, if the base-pairing configu-
rations are in equilibrium, all that is needed to model this
system are the restricted partition functions Qm of the
base-pairing configurations which are summed over only
those structures that have exactly m externally accessible
bases and a polymer physics partition function Wm(R)
that describes a polymer of length m bases held at a fixed
end-to-end distance R. The full partition function at end-
to-end distance R is then the convolution

Z(R) =

N∑

m=0

QmWm(R) (3)

of these two quantities [64]. From this partition function
all thermodynamic properties can be derived. Using this

approach with the uniform pairing energy model with loop
entropy yields a good description of the experiments on
single-stranded DNA at least in the large force regime [63].
It is believed that the difference in the low force regime is
due to counter ion and charge effects which can also be un-
derstood [67]. Calculating the partition functions Qm with
the realistic energy model and using appropriate poly-
mer models for Wm(R) yields quantitative agreement with
the experiments on short RNA [64–66]. The most surpris-
ing outcome of applying these quantitative descriptions to
more complicated RNA molecules is that the thermody-
namic force-extension curve already becomes more or less
featureless if the length of the RNA molecule is on the
order of 200 bases due to a compensation effect between
different structural elements [64]. Thus, there is no hope
to determine the structure of an RNA molecule just by
observing its mechanical response, as long as the system
remains in thermodynamic equilibrium. As we will discuss
below though, exploiting RNA kinetics gives much more
information on the structure of an RNA molecule.

3 Non-equilibrium properties

3.1 Experimental data on DNA/RNA kinetics

Experiments that probe the base-pairing kinetics are chal-
lenging, and there has not been a systematic large-scale
effort to dissect the kinetics to the same degree as has
been done for the thermodynamics. Early relaxation ex-
periments on bulk samples [68] already determined the
rate for helix growth, i.e. the rate for closing a base-pair
at the end of a helical segment, to be in the range 1 −
20 × 106 s−1. From reannealing experiments with peri-
odic sequences, Pörschke [69] estimated the rate for the
displacement of a bulge loop by one base to be roughly
5 × 106 s−1. This latter process amounts to the slippage
of a base-pair, i.e. one base switches its binding partner.
Hence, the most elementary steps in base-pairing kinetics
occur on the (sub-)microsecond time scale.

Using modern optical single molecule methods, the
closing of hairpin loops was found to be roughly 10 to
100 times slower [70]. The same methods were also used
to study the dynamics of internal loops [71], yielding a sur-
prisingly low estimate for the rate of helix growth (104 −
105 s−1), which may be an effect of the fluorophore tags.
Very recently, the kinetics of spontaneous branch migra-
tion of Holliday junctions in DNA was examined [72].
Here, the lifetimes of the individual states were roughly in
the millisecond to second time scale. More complicated re-
arrangements in the base-pairing pattern and the tertiary
structure of RNA can be considerably slower and reach the
time scale of minutes. Classical biochemical methods [73]
and single molecule techniques, see e.g. [10, 74–77], com-
plement each other in the study of the kinetics of RNA
folding.
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3.2 Theoretical and simulation approaches

While the thermodynamics of DNA/RNA base-pairing is
fully determined by specifying a (free) energy for each
base-pairing state, a full description of the kinetics in this
state space requires the knowledge of all transition prob-
abilities W (n′, t′|n, t) from state n at time t to state n′

at time t′. In such a description, one does not explic-
itly consider the time evolution of the full spatial poly-
mer configuration. Instead, the polymer dynamics enters
only implicitly through the effective transition probabil-
ities W (n′, t′|n, t) between different base-pairing states.
Clearly, this simplification is necessary due to the enor-
mous range of time scales in the dynamics of these mole-
cules. Indeed, the rapid Brownian dynamics of the poly-
mer degrees of freedom is usually well separated from the
microsecond (and up) time scale of (significant) changes
in the base-pairing state.

Commonly, the description is further simplified by as-
suming that the transitions between these states are sim-
ple Poisson processes, which are characterized by a single
rate constant kn→n′ for each transition. The existing mod-
els differ in the set of states and transitions that are ex-
plicitly taken into account. While every kinetic model has
to assure that each allowed state can indeed be reached
from each initial condition (ergodicity), there are essen-
tially two approaches that differ in the scale of the confor-
mation changes that are allowed to take place in a single
transition. One approach is to allow only single base steps,
i.e. opening and closing of single base-pairs and slippage of
a single bond [78–81]. Simulations using these kinetics are
computer intensive and are usually practical only for rela-
tively small molecules (e.g. on the order of 100 bases). This
approach can also be appropriate when the base-pairing
kinetics is coupled to another dynamical process that is ex-
ternally driven, as in the example of translocation through
a nanopore discussed below [81]. The other approach is to
use larger scale rearrangements like helix formation and
opening as the elementary steps [57, 61, 82, 83]. This ap-
proach, in particular in combination with the technique of
exactly clustered stochastic simulation [61], can be used
to study even the dynamics of large RNAs over long time
scales. Note that whereas pseudo-knots are problematic to
deal with in the recursion relation Eq. (2) of the equilib-
rium theory, pseudo-knots cause no specific problems in
kinetic simulations [57, 61, 82, 83].

Besides choosing the set of elementary moves for a ki-
netic model, one must fix the associated kinetic rates. Of
course, one has to assure that the kinetics reproduces the
thermodynamics, if allowed to equilibrate. This is guaran-
teed when the rates satisfy detailed balance, which con-
strains the ratio of the forward and backward rate for
a transition to the associated Boltzmann factor. The re-
maining rate constants must be estimated from the avail-
able experimental data on DNA/RNA kinetics, see above,
since information on the detailed kinetic barriers for each
elementary move is not available. As a result, the model ki-
netics is semi-quantitative at best (however, see Ref. [84],
discussed below, for an example of a remarkably good
agreement). This may appear as a drawback, and indeed,

more detailed experimental information is highly desir-
able. On the other hand, the lack of a fully quantitative
description does not impede the study of qualitative phe-
nomena, some examples for which are discussed next.

3.3 Non-equilibrium phenomena

The non-equilibrium behavior of DNA and RNA is only
beginning to be explored. To illustrate the types of phe-
nomena that can emerge from the microscopic steps con-
sidered above, we discuss four examples here.

3.3.1 Dynamics of DNA slippage

Not only the thermodynamics, but also the kinetics of
base-pairing can be probed through the application of
forces on the piconewton scale. Let us consider a dsDNA
with a periodic sequence, to which a shear force is ap-
plied on opposite strands at opposite ends, as indicated
in Fig. 5. The base-pairing kinetics of this relatively sim-
ple system already displays a rich phenomenology [85].
From a physical point of view, periodic DNA is interest-
ing, since periodic sequences have many non-native base-
pairing conformations where one strand is shifted with
respect to the other, and shearing probes the transitions
between such states, i.e. the dynamics of DNA slippage.
This is interesting also from a biological point of view,
since DNA slippage during genome replication allows the
expansion of nucleotide repeats, and, for certain repeats
inside genes, triggers a variety of diseases including Hunt-
ington’s disease. Note that the shear force is essential here,
since the usual unzipping geometry, where the force is ap-
plied from the same end of the dsDNA, probes only the
consecutive opening of native base-pairs, i.e. those present
in the ground state of the molecule.

Many years ago, Pörschke melted periodic dsDNA and
studied the kinetics of reannealing through UV absorption
[69]. Based on these experiments, he already suggested the
mechanism that permits DNA slippage: small bulge loops
can form at the ends of the molecule when a few bases
spontaneously unbind and rebind shifted by one or several
repeat units. Once formed, a bulge loop may diffuse along
the molecule and anneal at the other end, effectively slid-
ing the two strands against each other by a length equal to
the size of the bulge loop, see Fig. 5. This mechanism in-
volves only small energetic barriers compared to the large
barrier for complete unbinding and reassociation.

An applied shear force can induce DNA slippage [85].
At zero force, the rates for bulge loop creation are the
same at all four strand ends, if the two single strands
are perfectly aligned. Two misaligned strands have imbal-
anced rates which tend to realign them. As a consequence,
a certain force threshold fc needs to be overcome in or-
der to produce a net outward drift separating the two
strands. This critical force can be estimated by balancing
the binding energy per base-pair, εb, with the mechan-
ical work exerted when a base-pair of length `d is con-
verted into two single-stranded bases of length `s, yield-
ing fc ≈ εb/(2`s − `d). Fig. 5 displays the scaling of the
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Fig. 5. Dynamics of DNA slippage under tension. Left: In pe-
riodic DNA sequences, sliding is mediated by bulge loops that
diffuse along the DNA. When a bulge loop reaches the oppo-
site end, the two strands have effectively slipped against each
other by a distance equal to the loop size. Right: Scaling of
the mean rupture time with the number of bases N for differ-
ent shear forces, with DNA parameters roughly corresponding
to AT-sequences at 50◦C. The symbols represent Monte Carlo
data, while the solid lines for f ≥ fc are power law fits. For
f < fc the rupture time increases exponentially. The data for f

slightly larger than fc (connected by the dashed line), demon-
strates the crossover from diffusive to drift behavior, and shows
that the cubic scaling indeed holds only at the critical force.

mean rupture time (time until complete separation of the
two strands) with the number of bases N for a number
of different forces (see Ref. [85] for the detailed model
description and the parameter choice). There are four dis-
tinct asymptotic behaviors: an exponential increase with
N for small forces, a cubic scaling with N at fc, a nearly
quadratic scaling above fc but below a second thresh-
old f∗, and linear scaling above f∗. The behavior in the
two extremes is easily interpreted: for small f , rupture is
driven by thermal fluctuations across a large free energy
barrier with an associated Kramers time that scales expo-
nentially with N , and linear scaling at large f is expected
when individual bonds break sequentially at a constant
rate.

The rupture dynamics at the critical force is best un-
derstood by analogy with the reptation problem [86], since
bulge loops in the DNA structure behave similarly to the
“stored length” excitations of a single chain in a polymer
network: these excitations are generated at the ends of
the polymer with a constant rate, diffuse along the poly-
mer and reach the other end with a probability ∼ N−1.
Therefore, the macroscopic diffusion constant for the rel-
ative motion of the two DNA strands scales as D ∼ N−1

and the time for diffusion over distance N is ∼ N 3. For
f > fc strand separation is energetically a downhill pro-
cess, which induces a drift velocity v between the two
strands, leading to a quadratic scaling of the mean rup-
ture time. However, this behavior does not persist for large
forces, due to a change in the rupture mode: at forces larger
than f∗ ≈ εb/(`s − `d) the double strand can open by un-
raveling from both ends, leading to a rupture time that
scales linearly with N .

The bulge loop dynamics in periodic DNA is a many-
particle problem with both ’particles’ and ’antiparticles’,
since bulge loops on opposite strands annihilate each other
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Fig. 6. Comparison between an experimental force-extension
curve (black) for the 16S ribosomal RNA of E. coli and a
model simulation (red), together with some structures (green)
along the computed unfolding pathway. Taken (with permis-
sion) from Ref. [84].

when they overlap. Similarly, there is pair creation, and a
residual interaction also among the particles of each class.
The collective properties emerging from these interactions
have only begun to be analyzed [85]. We believe this exam-
ple illustrates that the dynamics of DNA/RNA has some
appealing connections to other areas of physics.

3.3.2 Force-induced denaturation of RNA

In Section 2.3.3 we already discussed the stretching of
an RNA molecule from both ends in the adiabatic limit,
where the extension of the molecule is increased so slowly
that the secondary structure remains in quasi-equilibrium
during the process. When the extension is increased more
rapidly, the force-extension curve reflects the structural
dynamics of the RNA [66, 84]. Ref. [84] has compared ex-
perimental force-extension traces with stochastic simula-
tions that use the opening and closing of complete helices
as elementary steps. The authors found a remarkably good
agreement as shown in Fig. 6 taken from Ref. [84]. With
the help of their simulations, the authors examined the
unfolding pathway and noted that it does not only consist
of the successive opening of native helices, but that long-
lived intermediates with non-native helices have a signif-
icant effect on the force-extension traces. This forced un-
folding therefore demonstrates, on a single-molecule level,
the presence of kinetic traps due to non-native secondary
structure, which is known to hamper also the inverse, fold-
ing process [73].

In this case, the coarse-grained kinetic model is appar-
ently adequate, which is presumably due to the fact that
only large scale rearrangements are visible in the observed
force extension curves. These large scale rearrangements
are dominated by the thermodynamic free energy barriers
associated with the opening of entire helices.
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Fig. 7. Driven translocation of a structured RNA molecule
through a tiny pore, which allows single but not double strand
to pass. Individual DNA or RNA molecules are driven through
this hole by an electric field using the fact that nucleic acids
are positively charged. By observing the ion current through
the pore, it can be determined if a molecule is in the pore or
not. Thus, the translocation time for individual molecules can
be measured.

3.3.3 Co-transcriptional RNA folding

It is known that RNA folding can be very slow when stud-
ied in vitro, yet the same molecule may quickly fold in
vivo [73]. One of the mechanisms that can lead to this
difference is co-transcriptional folding: whereas in vitro,
folding is induced by a change in ambient conditions (e.g.
a sudden decrease in temperature), RNA folding in vivo
is concurrent with RNA synthesis. This effect was strik-
ingly demonstrated in Ref. [57] with kinetic folding sim-
ulations of the HDV ribozyme, a well-studied enzymatic
RNA. The kinetic model was the same as in the preced-
ing section. The authors found that simulations starting
with the entire sequence and no base-pairs, resulted in
about 2/3 of the runs being trapped in a misfolded inter-
mediate for up to a minute of estimated real time. From
a biological point of view this is very surprising since the
replication of HDV’s genome takes only about 30s. The
apparent contradiction between replication time and fold-
ing time was resolved when folding was simulated con-
currently with synthesis at a rate of 50 bases per second:
under these conditions the fraction of kinetically trapped
ribozyme structures decreased to less than 10 %.

3.3.4 Dynamics of translocation through nanopores

During transcription, the dynamic processes of RNA syn-
thesis and base-pairing are coupled. In contrast, during
translation the base-pairing dynamics is coupled to the
translocation of the RNA through a tiny opening in the
ribosome. A similar translocation scenario is studied in
a series of recent single-molecule experiments reviewed
in [87], which use electric fields to drive RNA and DNA
through tiny pores that let single but not double strands
pass. Initially, these experiments mainly characterized the
translocation of homopolymers, whereas the effect of base-
pairing on translocation, see Fig. 7, is now beginning to
be explored [11, 88–90].

Without base-pairing, translocation of (not too long)
RNAs can be described as a one-dimensional drift-diffu-
sion process [91], with the number of translocated bases,
m(t), as the reaction coordinate, see Fig. 7. In general, the

Fig. 8. Two random walker model for translocation of an RNA
molecule through a pore. The two random walkers represent
the position of the molecule with respect to the pore (P), and
the position of the first closed base-pair before the pore (R).
The dynamics of translocation results from the two walkers
being biased in opposing directions.

coupling to the base-pairing dynamics destroys this simple
picture [81]. However, some insight can be gained by con-
sidering the adiabatic limit where the internal base-pairing
dynamics of the RNA is assumed to be much faster than
the translocation process. In this limit, the dynamics is
again one-dimensional, however with sequence-dependent
kinetic barriers. These barriers are much smaller than one
may naively expect: for instance, the barrier for translo-
cation of a single long hairpin is not the total binding free
energy of the hairpin, but is substantially reduced through
the formation of non-native base-pairs, e.g. among the
bases that have already translocated. The most signifi-
cant barrier turns out to be the “entrance” of the pore
into the structure.

The qualitative effect that non-native base-pairs can
contribute to a significant speed up in translocation re-
mains operative even outside the adiabatic (slow translo-
cation) limit. In the opposite limit, the base-pairing rate
caps the translocation speed. The basic physics of the
crossover between these two limits can be understood with
the help of a very simple model, see Fig. 8: The pore is
represented by a random walker with a bias (due to the
external voltage) to run into the RNA structure, whereas
the index of the first closed base-pair in front of the pore
is another random walker with a bias in the opposite di-
rection (due to the binding free energy of base-pairs). This
stochastic “push-of-war” leads to an average drift in one
direction and determines the translocation speed [81].

Besides an electrical field there are other possible driv-
ing forces for translocation. Among these, mechanical pull-
ing is particularly interesting, because these techniques al-
low not only the application of a force, but simultaneously
the measurement of an extension. Ref. [92] argues that
with this additional information, the base-pairing pattern
of an RNA molecule (including pseudo-knots) can in prin-
ciple be determined, if its sequence is already known.
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4 Conclusions and Outlook

Base pairing in nucleic acids is conceptionally very sim-
ple. Yet, as they are applied to molecules of even moderate
length, the simple rules of base-pairing lead to a variety of
interesting emergent physical phenomena. Nature not only
has to respect the emergent physical properties of base-
pairing but in many cases actually exploits them. In addi-
tion, human engineers also start to control and make use
of the interesting physical properties of base-pairing [93].
This makes it important to obtain a fundamental under-
standing of the physics of base-pairing.

Here, we have shown how some of the phenomena re-
sulting from the simple base-pairing rules can be under-
stood based on theoretical models. However, some of these
approaches are only a first step. While the thermodynam-
ics of base-pairing is by now a relatively mature field,
the kinetics of base-pairing is only beginning to be un-
derstood and there are certainly many surprises awaiting
researchers that are trying to uncover how base-pairing
kinetics affects biological phenomena and engineering ap-
plications.
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